
Apache Forrest project guidelines

Table of contents

1 The mission of Apache Forrest... 2

2 Open development...2

3 Roles and responsibilities..2

4 Project Management Committee (PMC)...2

4.1 Quarterly reports to ASF Board..3

4.2 Electing new committers and PMC members...4

5 Decision making..4

5.1 Voting... 4

5.2 Types of approval... 5

5.3 Vetoes... 5

5.4 Actions.. 6

5.5 Voting timeframes.. 7

5.6 Voting procedure.. 7

5.7 Ultimatum and breakdown..7

6 Communication channels.. 7

7 Code management... 8

8 Contribution and acknowledgement..8

9 Development procedure.. 9

Copyright © 2002 The Apache Software Foundation. All rights reserved.

This document provides the guidelines under which the Apache Forrest project operates. It defines the
roles and responsibilities, who may vote, how voting works, how conflicts are resolved, etc. Apache
Forrest is a project of The Apache Software Foundation (ASF) which is a non-profit corporation. As
with all such organisations there are some procedures to be followed. The ASF website explains the
operation and background of the ASF. These project guidelines supplement that ASF documentation.
Normally these guidelines are not needed - the project just gets on with its day-to-day operation - but
they enable all people to understand how the project operates.

1. The mission of Apache Forrest

The creation and maintenance of open-source software for distribution at no charge to the public, with
the purpose of generation of aggregated multi-channel documentation maintaining a separation of
content and presentation.

2. Open development

Forrest is typical of Apache projects, in that it operates under a set of principles that encourage open
development. There is no clear definition (perhaps that is part of it) and it is ever-evolving. Each ASF
project is different in its own way - there is healthy diversity rather than uniformity across all projects.
The main principles are to facilitate open collaborative development, with respect for others; to ensure
that there is a healthy community (even to give community issues higher priority than code issues); to
use a consensus-based approach; to ensure that each contributor is recognised and feels a productive
part of the community; to encourage diversity; to make the project a nice place to be.

Each project, as part of the resolution that formed its Project Management Committee (PMC), creates
its set of project guidelines intended to encourage open development and increased participation.
These facilitate the project to conduct its main charge, which is the creation and maintenance of
open-source software for distribution at no charge to the public with the purpose of its mission.

For more information about the way that Apache projects operate, please refer to the ASF foundation
and ASF developer sections of the ASF website, including the ASF ByLaws and the How it works
document, the FAQs about the Foundation, and the Incubator project.

3. Roles and responsibilities

The meritocracy enables various roles as defined in the How it works document.

user | developer | committer | PMC member | ASF member

The Apache Forrest committers and PMC members are listed.

4. Project Management Committee (PMC)

The Apache Forrest project was established in January 2002 and became a top-level project in May
2004. The Project Management Committee (PMC) was created by a resolution of the board of the
Apache Software Foundation. See explanation of the role of the PMC in that resolution and also the
ASF Bylaws and How-it-works and this mail thread.

At Forrest, the group of PMC members essentially equates to the group of committers. We encourage

Apache Forrest project guidelines

Page 2/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.apache.org/foundation/
http://www.apache.org/foundation/records/minutes/2004/board_minutes_2004_05_26.txt
http://www.apache.org/foundation/
http://www.apache.org/dev/
http://www.apache.org/foundation/bylaws.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/faq.html
http://incubator.apache.org/
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html#users
http://www.apache.org/foundation/how-it-works.html#developers
http://www.apache.org/foundation/how-it-works.html#committers
http://www.apache.org/foundation/how-it-works.html#pmc-members
http://www.apache.org/foundation/how-it-works.html#asf-members
who.html
http://www.apache.org/foundation/records/minutes/2004/board_minutes_2004_05_26.txt
http://www.apache.org/foundation/bylaws.html
http://www.apache.org/foundation/how-it-works.html#pmc
http://mail-archives.apache.org/mod_mbox/incubator-general/200311.mbox/%3C7025D8A1-1D0F-11D8-8AF4-000393753936@apache.org%3E

all committers to be PMC members. See explanation below. See the "who we are" page for
explanation of why some committers from the old project are not PMC members.

PMC members can be as active as they choose, with no pressure from the project. People can be quiet
and speak up occasionally when they see a topic that motivates them enough to contribute to the
discussion or to cast a vote. Individual PMC members do not need to be involved in every aspect of the
project. As a group, the PMC will maintain sufficient oversight.

The responsibilities of the PMC include:

• Be familiar with these project guidelines, and the ASF Bylaws, and with the ASF documentation
and procedures in general.

• Keep oversight of the commit log messages and ensure that the codebase does not have copyright
and license issues, and that the project is heading in the desired direction.

• Keep oversight of the mailing lists and community to ensure that the open development ideals are
upheld.

• Resolve license disputes regarding products of the project, including other supporting software that
is re-distributed.

• Decide what is distributed as products of the project. In particular all releases must be approved by
the PMC.

• Guide the direction of the project.
• Strive for and help to facilitate a harmonious productive community.
• Nominate new PMC members and committers.
• Maintain the project's shared resources, including the codebase repository, mailing lists, websites.
• Speak on behalf of the project.
• Maintain these and other guidelines of the project.

The PMC does have a private mailing list on which it can discuss certain issues. However this list is
rarely used and every effort is made to conduct all discussion on the public mailing lists.

Membership of the PMC is by invitation only and must receive consensus approval of the PMC
members.

The actual list of PMC members is in the SVN "committers" repository at /board/committee-info.txt
and is reflected at the "who we are" page.

A PMC member is considered "emeritus" by their own declaration, e.g. perhaps personal reasons.
Please send a note to the PMC private mail list and we will follow up to request acknowledgement of
the Board. An emeritus member may request reinstatement to the PMC. Such reinstatement is subject
to consensus approval of the PMC members. Membership of the PMC can be revoked by unanimous
consensus of PMC members (other than the member in question).

The chair of the PMC is appointed by the Board and is an officer of the ASF (Vice President). The
chair has primary responsibility to the Board, and has the power to establish rules and procedures for
the day-to-day management of the communities for which the PMC is responsible, including the
composition of the PMC itself. The chair reports to the board every three months about the status of
the project. The PMC may consider the position of PMC chair annually and may recommend a new
chair to the board. Ultimately, however, it is the board's responsibility who it chooses to appoint as the
PMC chair. See further explanation of the role of the chair in the ASF Bylaws and the PMC FAQ

4.1. Quarterly reports to ASF Board

Every three months, it is the responsibility of our PMC chair to send a report to the ASF Board. This is

Apache Forrest project guidelines

Page 3/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

who.html
who.html
http://www.apache.org/foundation/bylaws.html
http://www.apache.org/dev/pmc.html#chair

mainly concerned with the status of our community, but can also include the technical progress.
Further details are in the "committers" SVN in the /board/ directory.

The minutes are available for each board meeting. Our reporting schedule is: Feb, May, Aug, Nov.

4.2. Electing new committers and PMC members

When we see new people who are committed and consistent, we will discuss each case to ensure that
the PMC is in agreement. See the list of qualities that we look for. We conduct the vote on the private
PMC mailing list to enable a frank discussion and so that we do not conduct public discussions about
people.

In most cases we will be inviting people to go straight from developer to PMC member, i.e. they
simultaneously become committer and PMC member. We always want new committers to also be
PMC members. Otherwise they do not have a binding vote and so we would create classes of
committers. Another issue is indemnification. However, when we invite a new committer we do let
them choose not to be on the PMC, though we do not encourage that.

However, there may be extraordinary cases where we want limited work-related commit access and so
the committer is not also a PMC member (e.g. perhaps temporary access for GSoC). This will be
resolved during the discussion and vote.

PMC members can also see further notes about the process of electing new people.

5. Decision making

Different types of decisions require different forms of approval. For example, the previous section
describes several decisions which require "consensus approval". This section defines how voting is
performed, the types of approval, and which types of decision require which type of approval.

Most day-to-day operations do not require explicit voting - just get on and do the work. See the "Lazy
approval" type described below.

5.1. Voting

Certain actions and decisions regarding the project are made by votes on the project development
mailing list. Where necessary, PMC voting may take place on the private PMC mailing list.

Votes are clearly indicated by subject line starting with [VOTE]. Discussion and proposal should have
happened prior to the vote. Voting is carried out by replying to the vote mail. See voting procedure
below. Votes are expressed using one of the following symbols:

+1 "Yes," "Agree," or "the action should be
performed." In general, this vote also indicates a
willingness on the behalf of the voter to assist
with "making it happen".

+0 This vote indicates a willingness for the action
under consideration to go ahead. The voter,
however will not be able to help.

-0 This vote indicates that the voter does not, in
general, agree with the proposed action but is
not concerned enough to prevent the action

Apache Forrest project guidelines

Page 4/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

http://www.apache.org/foundation/board/calendar.html
committed.html
http://mail-archives.apache.org/mod_mbox/incubator-general/200311.mbox/%3C7025D8A1-1D0F-11D8-8AF4-000393753936@apache.org%3E
http://wiki.apache.org/general/SummerOfCode
https://svn.apache.org/repos/private/pmc/forrest/pmc-member-vote.txt

going ahead.

-1 This is a negative vote. On issues where
consensus is required, this vote counts as a
veto. All vetoes must contain an explanation of
why the veto is appropriate. Vetoes with no
explanation are void. It may also be appropriate
for a -1 vote to include an alternative course of
action.

abstain People can abstain from voting. They can either
remain silent or express their reason.

All participants in the project are encouraged to show their preference for a particular action by voting.
When the votes are tallied, only the votes of PMC members are binding. Non-binding votes are still
useful to enable everyone to understand the perception of an action by the wider community.

Voting can also be applied to changes made to the project codebase. These typically take the form of a
veto (-1) in reply to the commit message sent when the commit is made.

5.2. Types of approval

Different actions require different types of approval:

Consensus approval Consensus approval requires 3 binding +1 votes
and no binding vetoes.

Lazy majority A lazy majority vote requires 3 binding +1 votes
and more binding +1 votes than -1 votes.

Lazy approval An action with lazy approval is implicitly allowed
unless a -1 vote is received, at which time,
depending on the type of action, either lazy
majority or consensus approval must be
obtained.

2/3 majority Some actions require a 2/3 majority of PMC
members. Such actions typically affect the
foundation of the project (e.g. adopting a new
codebase to replace an existing product). The
higher threshold is designed to ensure such
changes are strongly supported. To pass this
vote requires at least 2/3 of the votes that are
cast to be +1.

Unanimous consensus All of the votes that are cast are to be +1 and
there can be no binding vetoes (-1).

5.3. Vetoes

A valid veto cannot be over-ruled, it can only be withdrawn by its issuer. Any veto must be
accompanied by reasoning and be prepared to defend it.

The validity of a veto, if challenged, can be confirmed by anyone who has a binding vote. This does
not necessarily signify agreement with the veto - merely that the veto is valid. In case of disputes about
whether a veto is valid, then opinion of the PMC chair is final.

If you disagree with a valid veto, then you must engage the person casting the veto to further discuss

Apache Forrest project guidelines

Page 5/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

the issues. The vetoer is obliged to vote early and to then work with the community to resolve the
matter.

If a veto is not withdrawn, the action that has been vetoed must be reversed in a timely manner.

5.4. Actions

This section describes the various actions which are undertaken within the project, the corresponding
approval required for that action, and those who have binding votes over the action.

Action Description Approval Binding Votes

Code change A change made to a
codebase of the
project by a committer.
This includes source
code, documentation,
website content, etc.

Lazy approval PMC members

Release plan Defines the timetable
and actions for a
release.

Lazy majority PMC members

Product release When a release of one
of the project's
products is ready, a
vote is required to
accept the release as
an official release of
the project.

Lazy majority PMC members

Adoption of new
codebase

When the codebase for
an existing, released
product is to be
replaced with an
alternative codebase. If
such a vote fails to
gain approval, the
existing code base will
continue. This also
covers the creation of
new sub-projects
within the project.

2/3 majority PMC members

New committer When a new committer
is proposed for the
project.

Consensus approval PMC members

New PMC member When a new member
is proposed for the
PMC.

Consensus approval PMC members

Reinstate emeritus
member

An emeritus PMC
member can be
reinstated.

Consensus approval PMC members
(excluding the member
in question)

Committer removal When removal of
commit privileges is
sought.

Unanimous consensus PMC members
(excluding the
committer in question if
a member of the PMC)

Apache Forrest project guidelines

Page 6/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

PMC member
removal

When removal of a
PMC member is
sought. See also
section 6.5 of the ASF
Bylaws whereby the
ASF Board may
remove a PMC
member.

Unanimous consensus PMC members
(excluding the member
in question)

5.5. Voting timeframes

Votes are normally open for a period of one week to allow all active voters time to consider the vote. If
the vote has not achieved a quorum (the chair decides if sufficient people have voted), then it can be
extended for another week. If still no quorum, then the vote fails, and would need to be raised again
later. Votes relating to code changes are not subject to a strict timetable, but should be made as timely
as possible.

Be careful about holidays when calling a vote. This is hard when we do not know customs in every
part of the world. So if someone knows that there is a problem with the vote timing, then please say so.

5.6. Voting procedure

Discussion about the topic would have already happened in a [Proposal] email thread to express the
issues and opinions. The [Vote] thread is to ratify the proposal if that is felt to be necessary.

The instigator sends the Vote email to the dev mailing list. Describe the issue with no ambiguity and in
a positive sense. Define the date and time for the end of the vote period.

Votes are expressed by replying email using the voting symbols defined above. Voters can change
their vote during the timeframe. At the end of the vote period, the instigator tallies the number of final
votes and reports the results.

5.7. Ultimatum and breakdown

For breakdown situations and those requiring unanimous consensus, if this consensus cannot be
reached within the extended timeframe, then the Board expects the chair to act as the officer of the
Foundation and make the ultimate decision.

6. Communication channels

The primary mechanism for communication is the mailing lists. Anyone can participate, no matter
what their time zone. A reliable searchable archive of past discussion is built. Oversight is enabled.
Many eyes ensures that the project evolves in a consistent direction.

All decisions are made on the "dev" mailing list.

The main channel for user support is the "user" mailing list. As is usual with mailing lists, be prepared
to wait for an answer.

Occasionally we will use other communication channels such as IRC. These are used only for a
specific purpose and are not permanently available. This policy ensures that solutions are available in
the mailing list archives and enables people to respond at whatever time that they choose. Permanent

Apache Forrest project guidelines

Page 7/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

IRC channels are poor from a community-building point-of-view, as they tend to create time-zone
based cliques. So we don't.

Similarly, private discussions are discouraged. The rest of the community would not benefit from the
understanding that is developed. Off-list discussions put too much load on overworked volunteers.

7. Code management

The term "patch" has two meanings: Developers provide a set of changes via our Issue Tracker marked
for inclusion, which will be applied by a committer. Committers apply their own work directly, but it
is still essentially a patch.

We use the Commit-then-review method for decision-making about code changes. Please refer to that
glossary definition. Note that it does not preclude the committer from making changes to patches prior
to their commit, nor mean that the committer can be careless. Rather it is a policy for decision-making.

There is an important issue where both developers and committers need to pay special attention:
"licenses". We must not introduce licensing conditions that go beyond the terms of the Apache
License. If such issues do creep in to our repository, then we must work as quickly as possible to
address it and definitely before the next release.

There are some other problem areas: What should a committer do if the patch is sloppy, containing
inconsistent whitespace and other code formatting, which mean that actual changes are not easily
visible in the svn diff messages. What if there is poorly constructed (yet working) xml or java code?
What if the new functionality is beyond the scope of the project? What if there is a better way to do the
task? What if the patch will break the build, thereby preventing other developers from working and
causing an unstable trunk?

The committer has various options: ask the developer to resubmit the patch; change the patch to fix the
problems prior to committing; discuss the issues on the dev list; commit it and then draw attention to
the issues so that the rest of the community can review and fix it. A combination of these options
would appear to be the best approach. Please aim to not break the build, or introduce license problems,
or make noisy changes that obscure the real differences.

Committers should not be afraid to add changes that still need attention. This enables prompt patch
application and eases the load on the individual committer. An interesting side-effect is that it
encourages community growth.

8. Contribution and acknowledgement

Some principles of open development at ASF are to ensure that each contributor is recognised and
feels a productive part of the community, and to encourage diversity, respect, and equality. Key to this
is the recognition of contributions from individuals in a manner that also recognises the community
effort that made it all possible. It is important to remember that there is no concept of individual
leadership. See the discussion of meritocracy and other sections of the How the ASF works document.

In an Open Source Project, or more importantly, a project developed using an open process, such as
Apache Forrest, most contributions of actual code are supported by, or at least *should* be supported
by, design discussion, oversight, testing, documentation, bug fixes and much more. No code
contribution is an independent unit of work (or should not be). It is therefore impossible to credit
individual contributors, it is simply unmanageable, even if it is possible to identify each part of a
contribution.

Apache Forrest project guidelines

Page 8/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

issues.html
http://www.apache.org/foundation/glossary.html#CommitThenReview
http://www.apache.org/licenses/
http://www.apache.org/foundation/how-it-works.html#meritocracy
http://www.apache.org/foundation/how-it-works.html

At Apache Forrest we use the following method to provide recognition:

• All developers encourage other developers to participate on the mailing lists, treat each other with
respect, and openly collaborate. This enables the contributors to feel a part of the project and shows
that their discussion and ideas are valuable. These replies enhance the presence of their name in the
email archives and search engines.

• Encourage contributors to add patches via the issue tracker. This also enables clear tracking of the
issue and by default specifically shows who was the contributor.

• When committers apply the patch, they refer to the issue number and the contributor's name. This
enables linkage between the issue tracker and the Subversion history. It adds the contributor's name
to the mail archives.

• Committers apply patches as soon as possible. This keeps the contributor enthused and shows them
that their work is valuable.

• Committers add an entry for each significant contribution to the top-level changes document
(site-author/status.xml) and detailed entries to the relevant plugin's changes document. This
enables linkage to the relevant issue and shows the contributor's name. It also shows the initials of
the committer who did the work to add the patch.

• When committers are adding their own work, they similarly add entries to the "changes"
documents. Their initials are added to the entry.

• The existing PMC will notice new contributors who are committed. It eventually invites them to
become new committers/PMC members. See the notes about this topic.

• Committers/PMC members are listed.

As discussed above, there is no specific documentation which lists each contributor and their work.
For those who are interested there are various mechanisms: Use general internet search services; use
search services provided by various third-party mail archives; search the "svn" mailing list using
committer IDs and using contributor names; browse the changes page; use 'svn log' and 'svn blame'.

9. Development procedure

Note:
This section is still under development. The issues have been discussed on the mailing list. Decisions need to be put into words, so that we do
not need to revisit the topic.

Development work is done on the trunk of SVN. Wherever possible, functionality is contained in
"plugins". There are "release branches" of SVN, e.g. forrest_07_branch.

FIXME (open):
The following issues still need to be added above. There are also some relevant email threads, from which we need to extract info.

* Define our policy for adding changes to release branch.
* Define the purpose of the "whiteboard/incubator".
* Declare that we only really maintain the current release branch
(although contributed patches will be applied).

* When to create a temporary branch for development and when/how to merge.

Some of the many relevant threads in no particular order ...

http://marc.theaimsgroup.com/?t=113344003500003
Whiteboard usage - rename it to incubator

http://marc.theaimsgroup.com/?t=112798856400001

Apache Forrest project guidelines

Page 9/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

issues.html
docs_0_70/changes.html
committed.html
who.html
docs_0_80/changes.html

Starting a 1.0 development (Re: [Proposal] rollback)

http://marc.theaimsgroup.com/?l=forrest-dev&m=111968323717620
http://marc.theaimsgroup.com/?l=forrest-dev&m=111983663526246
http://marc.theaimsgroup.com/?t=111970529900001
Project participation and hackability (was: [VOTE] merge locationmap

http://marc.theaimsgroup.com/?t=112507381300001
use of whiteboard in forrest

http://marc.theaimsgroup.com/?t=112504310100005
[Proposal] Development process and a stable trunk

http://marc.theaimsgroup.com/?l=forrest-dev&m=113521408020541
when to make a release of a branch
http://marc.theaimsgroup.com/?l=forrest-dev&m=112643002807899
How to apply an update to 0.7

http://marc.theaimsgroup.com/?t=113616009300002
[RT] "Last known working snapshot" of Forrest head

http://marc.theaimsgroup.com/?t=113830245600001
[Proposal] code freeze on dispatcher related resources

http://marc.theaimsgroup.com/?t=114667400800004
[Proposal] Refining our Development Process

Document our use of Branches for development
http://issues.apache.org/jira/browse/FOR-631

Apache Forrest project guidelines

Page 10/10
Copyright © 2002 The Apache Software Foundation. All rights reserved.

	1 The mission of Apache Forrest
	2 Open development
	3 Roles and responsibilities
	4 Project Management Committee (PMC)
	4.1 Quarterly reports to ASF Board
	4.2 Electing new committers and PMC members

	5 Decision making
	5.1 Voting
	5.2 Types of approval
	5.3 Vetoes
	5.4 Actions
	5.5 Voting timeframes
	5.6 Voting procedure
	5.7 Ultimatum and breakdown

	6 Communication channels
	7 Code management
	8 Contribution and acknowledgement
	9 Development procedure

